

PHASE EQUILIBRIA IN THE Tl₂Te-Tl₅Te₃-Tl₉ErTe₆ SYSTEM

I.F. Mekhdiyeva¹, P.H. Babayeva², O.A. Aliyev², V.P. Zlomanov³, S.Z. Imamaliyeva^{1*}

¹Institute of Catalysis and Inorganic Chemistry named after acad. M. Nagiyev, Azerbaijan National Academy of Sciences, Baku, Azerbaijan ²Baku State University, Baku, Azerbaijan ³Magagan State University, Magagan Pureis

³Moscow State University, Moscow, Russia

Abstract. Ternary system Tl-Er-Te was experimentally investigated in the $Tl_2Te-Tl_5Te_3-Tl_9ErTe_6$ compositions area by methods of differential thermal analysis, powder X-ray diffraction technique and microhardness measurements applied to equilibrated alloys. Based on the experimental data, some isopleth sections and isothermal section at 300 K, as well as projections of the liquidus and solidus surfaces, were constructed. It was shown that more than 90% of the concentration triangle is occupied by the homogeneity area of solid solutions with Tl_5Te_3 structure (δ -phase). A narrow area of solid solutions (α -phase) based on Tl_2Te was detected. α - and δ -phases are separated by $\alpha+\delta$ two-phase area.

Keywords: thallium-erbium tellurides, phase equilibria, solid solutions, crystal structure.

Corresponding Author: Samira Imamaliyeva, Institute of Catalysis and Inorganic Chemistry named after acad. M. Nagiyev, ANAS, 113, H.Javid. ave., AZ-1143, Baku, Azerbaijan e-mail: <u>samira9597a@gmail.com</u>

Received: 14 October 2019;

Accepted: 28 November 2019;

Published: 15 December 2019.

1. Introduction

Complex metal chalcogenides have received a lot of attention thanks to their important functional properties, such as thermoelectric, photoelectric, optical, magnetic et al. properties (Ahluwalia, 2016; Alonso-Vante, 2018; Shi *et al.*, 2019b; Kanatzidis, 2015; Sa *et al.*, 2016; Jashangeet *et al.*, 2019). In particular, some layered tellurides of p^2 - and p^3 - elements are topological insulators and are considered promising for use in spintronics and in topological quantum computers (Pacile *et al.*, 2019; Shvets *et al.*, 2017; Papagno *et al.*, 2016). Introduction to the crystal structure of d and f- elements can improve their properties and give them additional functionality, such as the magnetic properties (Viti *et al.*, 2016; Aliev *et al.*, 2019; Niu *et al.*, 2017; Ying *et al.*, 2015; Shi *et al.*, 2019a).

Owing to features of the crystal structure (Schewe *et al.*, 1989; Bhan & Shubert, 1970), thallium telluride Tl_5Te_3 is one of the most suitable matrix compounds for obtaining its new cation- and anion-substituted analogs (Babanly *et al.*, 1985a,b; Imamaliyeva *et al.*, 2008; Babanly *et al.*, 2005, 2015; Bratmöller & Böttcher, 1993, 1994a, b; Blachnik & Dreibach, 1984). Ternary and more complex structural analogs of Tl_5Te_3 have a number of unique functional properties, which make them quite promising for using in various modern high technologies (Piasecki *et al.*, 2017; Heinke *et al.*, 2017; Arpino *et al.*, 2015; Bangarigadu-Sanasy *et al.*, 2014; Guo & Kleinke, 2015; Shah *et al.*, 2017; Khan *et al.*, 2018).

The search and development of physico-chemical foundations of direct synthesis of new multicomponent chalcogenide phases and materials are based on knowledge on data on phase equilibria and thermodynamic properties of the corresponding systems (Tomashyk, 2016; Zlomanov, 2010). Of greatest interest are systems in which structural analogs of known binary and ternary compounds or solid solutions based on them can form (Babanly *et al.*, 2017; Imamaliyeva *et al.*, 2018b).

In our previous papers (Imamaliyeva *et al.*, 2017, 2018a, c), we presented the results of phase equilibria investigations of a number system including Tl_5Te_3 compound or its structural analogs. We found that the former three systems are characterized by the formation of continuous solid solutions and the latter two systems-by wide areas of solid solutions.

Here we represent a detailed investigation of phase relationships of the Tl-Er-Te system in the $Tl_2Te-Tl_5Te_3-Tl_9ErTe_6$ composition area.

Tl₂Te and Tl₅Te₃ compounds melt congruently at 693 and 725 K and form the eutectic (695K, ~ 34 at.%Tl) (Asadov *et al.*, 1977). Tl₂Te crystallizes in the monoclinic system (space group C2/c; a = 15.662; b = 8.987; c=31.196Å, $\beta=100.76^{0}$, z=44) (Cerny *et al.*, 2002), while tetragonal lattice parameters of Tl₅Te₃ are equal to a = 8.930; c = 12.598 Å (Schewe *et al.*, 1989). Tl₂ErTe₆ melts with decomposition by the peritectic reaction at 705 K and has lattice constant: a=8.8501; c=12.9524 Å, z=2 (Mekhdiyeva *et al.*, 2018; Imamaliyeva *et al.*, 2018d).

It was found that the $Tl_2Te-Tl_9ErTe_6$ and $Tl_5Te_3-Tl_9ErTe_6$ boundary systems are partially quasibinary due to the peritectic character of the melting of the Tl_9ErTe_6 compound. The former system is characterized by the formation of a wide, while the second one by continuous series of solid solutions with the Tl_5Te_3 structure based on Tl_9ErTe_6 (Imamaliyeva *et al.*, 2018d).

2. Experimental

2.1. Materials and syntheses

Starting compounds Tl_2Te , Tl_5Te_3 , and Tl_9ErTe_6 were synthesized by the melting of high purity elements (Table 1). Because thallium was stored in water to prevent its oxidation in air, it was dried immediately before use. Since thallium and its compounds are toxic, it was handled using protective gloves.

Synthesis of Tl₂Te and Tl₅Te₃ was carried out in evacuated (~ 10^{-2} Pa) quartz ampoules at 750 K with following slow cooling. Tl₉ErTe₆ was synthesized by alloying stoichiometric amounts of Tl₂Te, Er, and Te. This is due to Tl and Er form thermodynamically stable compounds with each other, and this somewhat complicates the synthesis of the ternary compound from elemental substances. Tl₉ErTe₆ melts incongruently (Mekhdiyeva *et al.*, 2018; Imamaliyeva *et al.*, 2018d). Thus and so after alloying this mixture, the obtained Tl₉ErTe₆ ingot was ground to a powder, thoroughly stirred, compacted into a pellet, and annealed at 680 K for 800 h. To prevent the interaction of quartz with erbium, the compound Tl₉ErTe₆ and alloys in the system under investigation were synthesized in graphitized ampoules.

The purity of the synthesized compounds was checked by differential thermal analysis (DTA) and powder X-ray diffraction (XRD) techniques.

All alloys of the investigated system were prepared by melting the stoichiometric quantities of the pre-synthesized binary and ternary compounds in evacuated quartz tubes at 900 K in a vertical tube furnace. After the synthesis, alloys were powdered in

an agate mortar, pressed into pellets and reheated at 680 K within 1000 h. In order to prevent a reaction between the ampoules and erbium, the quartz tubes were coated with a carbon film via the decomposition of ethanol.

Chemical	Mass fraction purity	Source	CAS No	Form
Erbium	0.999	Alfa Aesar	7440-52-0	Foil
		(Germany)		
Thallium	0.99999	Alfa Aesar	7440-28-0	rod
		(Germany)		
Tellurium	0.9999	Alfa Aesar	13494-80-9	broken ingots
		(Germany)		_

Table 1. Provenance and purity of the materials used in this investigation

2.2. Methods

DTA and XRD analyses, as well as microhardness measurements, were employed to analyze the samples.

DTA was performed using a NETZSCH 404 F1 Pegasus differential scanning calorimeter. The crystal structure was analyzed by a powder X-ray diffraction technique at room temperature using a Bruker D8 diffractometer utilizing CuK_{α} radiation within $2\theta = 10$ to 70°. Microhardness measurements were done with a microhardness tester PMT-3, the typical loading being 20 g.

3. Results and discussion

The combined analysis of experimental and literature data on boundary systems (Asadov *et al.*, 1977; Imamaliyeva *et al.*, 2018d) enabled us to construct the self-consistent diagram of the phase equilibria in the $Tl_2Te-Tl_5Te_3-Tl_9ErTe_6$ system (Table 2, Fig.1-4).

Isopleth sections of the $Tl_2Te-Tl_5Te_3-Tl_9ErTe_6$ system (Fig.1).

Fig.1 show the isopleth sections $Tl_2Te-[A]$ and $Tl_5Te_3-[B]$ of the $Tl_2Te-Tl_5Te_3-Tl_9ErTe_6$ system, where A and B are equimolar compositions on the $Tl_2Te-Tl_9ErTe_6$ and $Tl_5Te_3-Tl_9ErTe_6$ boundary systems as shown in Fig.4.

The liquidus of Tl₂Te-[A] section consists of two curves of primary crystallization of α - and δ -phases. The intersection point of these curves corresponds to the monovariant peritectic reaction L+ $\delta \leftrightarrow \alpha$ (695 K). Below the solidus, this section passes through the α , α + δ and δ phase areas.

Over the entire compositions range of the Tl_5Te_3 -[B] system only δ -phase crystallizes from the melt (Fig.1a).

In order to confirm the correct construction of the Tl_2Te -[A] polythermal section in Fig. 2 the powder X-ray diffraction patterns of some alloys along this section are given.

The isothermal section of the $Tl_2Te-Tl_5Te_3-Tl_9ErTe_6$ system at 300 K (Fig.3) consists of three areas. Over 90% of the concentration triangle is occupied by δ -solid solutions with Tl_5Te_3 structure. α -phase based on Tl_2Te has a narrow homogeneity area in the corresponding angle of the triangle. Homogeneity areas of the α - and δ -phases are separated by $\alpha+\delta$ two-phase region.

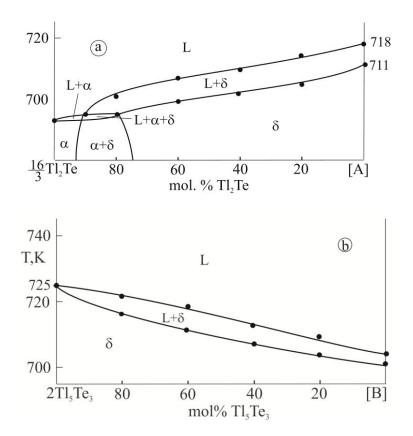
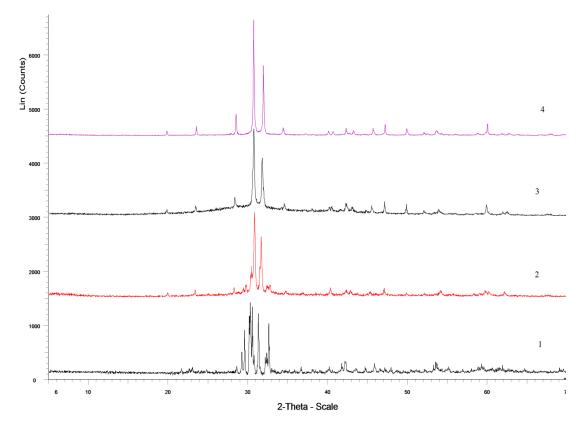
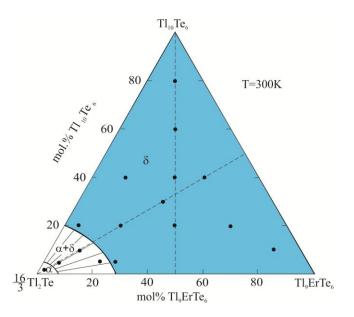




Figure 1. Isopleth sections Tl_2Te -[A] and Tl_5Te_3 -[B] of the Tl_2Te - Tl_5Te_3 - Tl_9ErTe_6 system

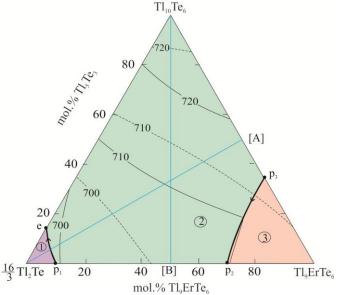

Figure 2. X-ray powder diffraction patterns of alloys of the Tl₂Te- [A] polythermal section 1- Tl₂Te; 2- 80 mol.% Tl₂Te; 3-20 mol.% Tl₂Te; 4- [A]

Figure 3. Isothermal section of the phase diagram of the Tl₂Te-Tl₅Te₃-Tl₉ErTe₆ system at 300 K. The circles indicate the compositions of the investigated alloys

The liquidus surface projection (Fig. 4).

Liquidus of Tl₂Te-Tl₅Te₃-Tl₉ErTe₆ system consists of three fields of the primary crystallization of α -, δ - and TlErTe₂ compound. These fields are separated by p₂e and p₁p₁' lines, which correspond to the monovariant peritectic equilibria L+ δ ↔ α and L+X↔ δ . Near the eutectic point (e) the peritectic equilibrium L+ δ ↔ α must be transformed into L↔ α + δ eutectic equilibrium. However, coordinates of this transformation are not experimentally fixed due to a narrow temperature range. Solidus surface consists of two areas corresponding to the completion of crystallization α - and δ -phases.

Figure 4. Projection of the liquidus and solidus (dashed lines) surface of the Tl₂Te-Tl₅Te₃-Tl₉ErTe₆ system. Primary crystallization fields of phases: 1-α; 2-δ; 3-TlErTe₂. Blue dash-dot lines show the investigated sections

The difference between this system and similar studied systems [Imamaliyeva,et al, 2017, 2018a, c] is the close melting points of all three initial compounds. The data presented show that on the surfaces of liquidus and solidus in this system there are no extremum points and, as a result, the temperature intervals of crystallization of the δ -phase are much narrower than in the above systems.

4. Conclusion

A full T-x-y diagram of the $Tl_2Te-Tl_5Te_3-Tl_9ErTe_6$ system is constructed, including some isopleth sections, an isothermal section at 300 K and liquidus and solidus surface projections. The studied system is characterized by the formation of a wide field of δ -solid solutions with the Tl_5Te_3 structure, occupying more than 90% of the concentration triangle. Obtained experimental data can be used for choosing the composition of solution-melt and for determining temperature conditions for growing crystals of δ - phase with a given composition.

References

- Ahluwalia, G.K. (2016). Gurinder Kaur Ahluwalia and Ranjan Patro. *Applications of Chalcogenides: S, Se, and Te*, 409.
- Aliev, Z.S., Amiraslanov, I.R., Nasonova, D.I., Shevelkov, A.V., Abdullayev, N.A., Jahangirli, Z.A., ... & Chulkov, E.V. (2019). Novel ternary layered manganese bismuth tellurides of the MnTe-Bi₂Te₃ system: Synthesis and crystal structure. *Journal of Alloys and Compounds*, 789, 443-450.
- Alonso-Vante, N. (2018). Chalcogenide Materials for Energy Conversion: Pathways to Oxygen and Hydrogen Reactions. Springer.
- Arpino, K.E., Wasser, B.D. & McQueen, T.M. (2015). Superconducting Dome and Crossover to an Insulating State in [Tl₄]Tl_{1-x}Sn_xTe₃. *APL Mattr.*, *3*(4), 041507-041514.
- Asadov, M.M., Babanly, M.B., & Kuliev, A.A. (1977). Phase equilibria in the Tl-Te system. *Inorg. Mater.*, *13*(8), 1407-1410.
- Babanly, M.B., Akhmadyar, A., &Kuliev, A.A. (1985a). System Tl₂Te-Bi₂Te₃-Te. *Russ. J. Inorg. Chem.*, 30(9), 2356-2361.
- Babanly M.B., Akhmadyar A. & Kuliev A.A. (1985b). System Tl-Sb-Te, *Russ. J. Inorg. Chem.*, 30, 1051-1057.
- Babanly, D.M., Amiraslanov, I.R., Shevelkov, A.V. & Tagiyev D.B. (2015). Phase equilibria in the Tl–Tll–Se system and thermodynamic properties of the ternary phases. J. Alloy. Comp., 644, 106-112.
- Babanly, D.M., Chiragov, M.I. & Babanly, M.B. (2005). New telluriumhalogenides of tallium. *Chem. Problems.*, 2, 149-151.
- Babanly, M.B., Chulkov, E.V., Aliev, Z.S., Shevelkov A.V. & Amiraslanov I.R. (2017). Phase diagrams in materials science of topological insulators based on metal chalkogenides. *Russ. J. Inorg. Chem.*, 62(13), 1703-1709.
- Bangarigadu-Sanasy, S., Sanka, C.R., Dube, P.A. Greedan, J.E. & Kleinke, H. (2014). Magnetic properties of Tl₉LnTe₆, Ln = Ce, Pr, Gd and Sm. *J. Alloys. Compd.*, *589*, 389-392.
- Bhan, S., & Shubert, K. (1970).Kristallstruktur von Tl₅Te₃ and Tl₂Te₃.J. Less. Common. Metals, 20(3), 229-235.
- Blachnik, R. & Dreibach, H.A. (1984). Phase Relations in the TIX-Tl₂Se systems (X=Cl, Br, I) and the Crystal Structure of Tl₅Se₂I. *J. Solid State Chem.*, *52*, 53-60.
- Bradtmöller, S. & Böttcher, P. (1993). Darstellung und kristallostructur von SnTl₄Te₃ und PbTl₄Te₃. *Z. anorg.allg. chem.*,619, 1155-1160.
- Bradtmöller, S. & Böttcher, P. (1994a). Crystal structure of copper tetra thallium tritelluride,

CuTl₄Te₃. Z. Kristallogr., 209(1), 97-102.

- Bradtmöller, S. & Böttcher, P. (1994b). Crystal structure of molybdenum tetra thallium tritelluride, MoTl₄Te₃. Z. Kristallogr., 209(1), 75-80.
- Cerny, R., Joubert, J., Filinchuk, Y. & Feutelais, Y. (2002). Tl₂Te and its relationship with Tl₅Te₃. *Acta.Crystallogr. C.*, 58(5), 163-165.
- Guo, Q. & Kleinke, H. (2015). Thermoelectric properties of hot-pressed (Ln=La, Ce, Pr, Nd, Sm, Gd, Tb) and Tl_{10-x}La_xTe₆ (0,90<x<1,05). *J. Alloys Compd.*, *630*, 37-42.
- Heinke, F., Eisenburger, L., Schlegel, R., Schwarzmüller, S. & Oeckler, O. (2017). The Influence of Nanoscale Heterostructures on the Thermoelectric Properties of Bi-substituted Tl₅Te₃. *Zeitschrift für anorganische und allgemeine Chemie*, 643(6), 447-454.
- Imamaliyeva, S.Z., Alakbarova, G.I., Babanly, K.N., Amiraslanov, I.R., & Babanly, M.B. (2018a). Tl₂Te-Tl₉SbTe₆-Tl₉TbTe₆ system. *New Materials, Compounds and Applications*, 2(3), 221-230
- Imamaliyeva, S.Z., Babanly, D.M., Tagiev, D.B. & Babanly, M.B. (2018b). Physicochemical Aspects of Development of Multicomponent Chalcogenide Phases Having the Tl₅Te₃ Structure: A Review. *Russ. J.Inorg. Chem.*, *63* (13), 1703-1708.
- Imamaliyeva, S.Z., Gasanly, T.M., Sadygov, F.M. & Babanly, M.B. (2018c). Phase diagram of the Tl₂Te-Tl₅Te₃-Tl₉GdTe₆ system. *Russ. J. Inorg. Chem.*, *63*(2), 262-266.
- Imamaliyeva, S.Z., Mekhdiyeva, I.F., Amiraslanov, I.R. & Babanly, M.B. (2018d). The study of Tl₂Te-Tl₉ErTe₆and Tl₅Te₃-Tl₉ErTe₆ systems. *Thermodynamic and Thermo-physical Properties of Solids*, *3*, 34-36.
- Imamaliyeva, S.Z., Gasanly, T.M., Zlomanov, V.P., &Babanly, M.B. (2017). Phase equilibria in the Tl₂Te-Tl₅Te₃-Tl₉TbTe₆ system. *Inorg. Mater.*, *53*(4), 354–361.
- Imamaliyeva, S.Z., Sadygov, F.M. & Babanly, M.B. (2008). New thallium-neodymium tellurides. *Inorg. Mater.*, 44(9), 935–938.
- Kanatzidis, M.G. (2015). Advances in thermoelectrics: From single phases to hierarchical nanostructures and back. *MRS Bull.*, 40(8), 687-694.
- Kaur, J., Parmar, A., Tripathi, S. K. & Goyal, N. (2019). Optical Study of Ge₁Sb₂Te₄ and GeSbTe thin films. *Materials Research Express*.
- Khan, W.M., Shah, W.H., Khan, S., Shah, S., Syed, W.A., Safeen, A. & Safeen, K. (2018). Enhanced of thermoelectric properties and effects of Sb doping on the electrical properties of T110-xSbxTe6 nano-particles. *International Journal of Heat and Technology*, *36*(2), 602-606.
- Mekhdiyeva, I.F., Babanly, K.N., Mahmudova, M.A., & Imamaliyeva, S.Z. (2018). The Tl₉ErTe₆-Tl₉BiTe₆ system and some properties of solid solution. *Azerb. Chem. J.*, 2, 80-84.
- Niu, Y.Y., Wu, D., Shen, L. & Wang, B. (2015). A layered antiferromagnetic semiconductor EuMTe₃ (M= Bi, Sb). *Physica Status Solidi (RRL)–Rapid Research Letters*, 9(12), 735-739.
- Niu, Y.Y., Wu, D., Su, Y.Q., Zhu, H., Wang, B., Wang, Y.X., ...& Wei, J. (2017). Uncooled EuSbTe₃ photodetector highly sensitive from ultraviolet to terahertz frequencies. 2D *Materials*, 5(1), 011008.
- Pacilè, D., Eremeev, S. V., Caputo, M., Pisarra, M., De Luca, O., Grimaldi, I., ...& Agostino, R. G. (2018). Deep insight into the electronic structure of ternary topological insulators: A comparative study of PbBi₄Te₇ and PbBi₆Te₁₀. *Physica Status Solidi (RRL)–Rapid Research Letters*, 12(12), 1800341.
- Papagno, M., Eremeev, S. V., Fujii, J., Aliev, Z.S., Babanly, M.B., Mahatha, S.K., ... & Chulkov, E.V. (2016a). Multiple coexisting Dirac surface states in three-dimensional topological insulator PbBi₆Te₁₀. ACS nano, 10(3), 3518-3524.
- Papagno, M., Eremeev, S., Fujii, J., Aliev, Z.S., Babanly, M.B., Mahatha, S. Vobornik, I., Mamedov, N., Pacile, D., Chulkov, E. (2016b). Multiple Coexisting Dirac Surface States in Three-Dimensional Topological Insulator PbBi₆Te₁₀.*ACS Nano*, 10, 3518-3524.

- Piasecki, M., Brik, M.G, Barchiy, I.E, Ozga, K., Kityk, I.V., El-Naggarf, A.M., Albassam, A.A., Malakhovskaya, T.A., Lakshminarayana, G. (2017). Band structure, electronic and optical features of Tl₄SnX₃ (X= S, Te) ternary compounds for optoelectronic applications. *J. Alloys Compd.*, 710, 600-604.
- Sa, B., Sun, Z. & Wu, B. (2016). The development of two dimensional group IV chalcogenides, blocks for van der Waals heterostructures. *Nanoscale*, 8(2), 1169-1178.
- Schewe, I., Böttcher, P., & Schnering, H.G.(1989). The crystal structure of Tl₅Te₃ and its relationship to the Cr₅B₃ type. *Z. Kristallogr.*, *188*, 287-298.
- Shah, W.H., Khan, A., Waqas, M. & Syed, W.A. (2017). Effects of Pb doping on the seebeck co-efficient and electrical properties of Tl_{8.67}Pb_xSb_{1.33-x}Te₆chalcogenide system. *Chalcogenide Lett.*, *14*(2), 61-68.
- Shi, Y., Guo, Q., Cheng, X., Jafarzadeh, P., Macario, L.R., Menezes, L. & Kleinke, H. (2019a). Thermoelectric properties of TISbTe₂ doped with In and Yb, *J. Alloys Compd.*, 795, 1-7.
- Shi, Y., Sturm, C. & Kleinke, H., (2019b). Chalcogenides as thermoelectric materials. *Journal* of Solid State Chemistry, 270, 273-279
- Shvets, I.A., Klimovskikh, I.I., Aliev, Z.S., Babanly, M.B., Sánchez-Barriga, J., Krivenkov, M., ... & Chulkov, E.V. (2017). Impact of stoichiometry and disorder on the electronic structure of the PbBi₂Te_{4-x}Se_x topological insulator. *Physical Review B*, 96(23), 235124.
- Tomashyk, V. (2017). Ternary Alloys Based on III-V Semiconductors. CRC Press.
- Viti, L., Coquillat, D., Politano, A., Kokh, K.A., Aliev, Z.S., Babanly, M.B., ...& Vitiello, M.S. (2015). Plasma-wave terahertz detection mediated by topological insulators surface states. *Nano letters*, 16(1), 80-87.
- Zlomanov, V.P. (2010). Physicochemical Analysis in Materials Science. *Russ. J. Inorg. Chem.*, 55(11), 1740-1753.